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In this paper we shall introduce two q-analogues of the squeezed states in terms of the
technique of integration within an ordered product of operators and the properties of
the inverses of q-deformed annihilation and creation operators, and some nonclassical
properties of the states are examined. Furthermore, we obtain some new completeness
relations composed of the bra and ket which are not mutually Hermitian conjugate.
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1. INTRODUCTION

In the past few years there has been paid much attention to q-deformed
bosonic oscillator owing to its possible applications in studing the q-analogue of
the quantum theory of the radiation light field (Gray and Nelson, 1990; Man’ko
et al., 1997). The q-oscillators are interpreted as a nonlinear oscillator with a very
specific type of nonlinearity (Man’ko et al., 1993a,b), in which the frequency of
vibration depends on the energy of these vibrations through the hyperboblic cosine
function containing a nonlinearity patameter. In Kuang and Wang (1993); Wang
et al. (1995, 1996); Fan (1994); Fan and Jing (1995); Kuang et al. (1993); Song
and Fan (2002) some important physical notions such as the coherent states, even
and odd coherent states and squeezed states for the ordinary oscillators have been
extended to the q-deformed case and their nonclassical properties were discussed.
In this paper in the same way as in Song and Fan (2002), we shall introduce
two normalizable q-analogues of the squeezed states by virtue of the technique
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of integration within an ordered product (IWOP) of operators and the proper-
ties of the inverses of q-deformed annihilation and creation operators, and some
non-classical properties such as quadrature squeezing, amplitude-squared squeez-
ing and antibunching effects etc, of the states are examined.

2. THE Q-ANALOGUES OF SQUEEZED STATES

We first introduce the nonliear annihilation operator af and creation operator
a
†
f as follows:

af = a
1

f (N )
, af = 1

f (N )
a† (1)

where f (N ) is an operator-valued function of the number operators N = a†a and
chosen to be real and non-negative, a and a† are the bosonic annihilation and
creation operators, respectively. From Eq. (1) for different nonlinearity function
f (N ) we can have different annihilation and creation operators af and a

†
f , in the

present paper if we take

f (N ) =
√

N

[N ]
, [N ] = (1 − qN )/(1 − q) (2)

then the nonliear annihilation operator af and creation operator a
†
f shall respec-

tively become the q-deformed boson annihilation operator aq and creation operator
a
†
q , which are distortions of the annihilation operator a and creation operator a†

of the usual harmonic oscillator.
The q-deformed boson creation operator a

†
q and annihilation operator aq and

the number operator N = a+
q aq satisfy the following closed algebraic relations:

aqa
†
q − qa†

qaq = 1, [N, a†
q ] = a†

q , [N, aq ] = −aq (3)

where q is a deformed parameter.
From Song and Zhu (2002), we know that the so-called q-Fock state |n〉q is

the usual Fock state |n〉 in fact, so operating the q-deformed operators aq , a
†
q and

N on the Fock states |n〉, we have

aq |n〉 =
√

[n]|n − 1〉 (4)

a†
q |n〉 =

√
[n + 1]|n + 1〉 (5)

N |n〉 = [n]|n〉 (6)
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Therefore we can easily obtain the inverses of the operators aq and a
†
q as follows:

a−1
q =

∞∑
n=0

1√
[n + 1]

|n + 1〉〈n| (7)

(
a†

q

)−1 =
∞∑

n=0

1√
[n + 1]

|n〉〈n + 1| = (
a−1

q

)†
(8)

It then follows that the inverses of the operators aq and a
†
q satisfy the following

noncommutative relations

aqa
−1
q = (

a†
q

)−1
a†

q = 1 (9)

a−1
q aq = a†

q

(
a†

q

)−1 = 1 − |0〉〈0| (10)

which means a−1
q is the right inverse of aq and (a†

q )−1 is the left inverse of a
†
q .

The result is completely analogous to the case of the inverse of ordinary basonic
operators.

By virtue of the inverses operators a−1
q , (a†

q )−1 and the number operator N ,
in the following we construct two new operators:

A†
q = Na−1

q , Aq = (
a†

q

)−1
N (11)

Using Eqs. (3) and (9–11), we can prove that[
aq,A

†
q

] = aqNa−1
q − Na−1

q aq = (N + 1)aqa
−1
q − N (1 − |0〉〈0|) = 1 (12)[

Aq, a
†
q

] = (
a†

q

)−1
Na†

q − a†
q

(
a†

q

)−1

N = (
a†

q

)−1
a†

q (N + 1) − (1 − |0〉〈0|)N = 1 (13)

and [
A†

q, N
] = −A†

q, [Aq,N] = Aq. (14)

Therefore A
†
q (a†

q ) and aq (Aq) make up fundamental canonical conmmutative
relations.

In Fan and Jing (1993), Fan has proved that the normal ordering form of the
vaccum projector is

|0〉〈0| =: exp
( − a†a

)
: (15)

In the same way we can also prove that the normal ordering form of the vaccum
projector is

|0〉〈0| = ... exp(−a†
qAq)

... (16)
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where the normal ordering
...
... is for the operators a

†
q and Aq , and it completely

distincts from the normal ordering form of the vaccum projector |0〉〈0| in Eq. (15).
Subsequently, we construct the following eigenstates, which the ket and bra

are not mutually Hermitian conjugate

||x〉 = π−1/4 exp

[
−1

2
x2 +

√
2xa†

q − 1

2
a†2

q

]
|0〉 (17)

〈x| = π−1/4〈0| exp

[
−1

2
x2 +

√
2xAq − 1

2
A2

q

]
(18)

where setting

x = 1√
2

(Aq + a†
q ). (19)

By virtue of Eqs. (16)–(19) and the IWOP technique, performing the following
integration we can obtain the following completeness relations:∫ ∞

−∞
dx||x〉〈x| = 1√

π

∫ ∞

−∞
dx

... exp
[
−x2 +

√
2x

(
a†

q + Aq

)

− 1

2

(
a†2

q + A2
q

) − a†
qAq

]
... = 1 (20)

By means of simple calculation, we can prove that the eigenvalue equations of the
coordinate operator x may be written as

x||x〉 = x||x〉, 〈x|x = 〈x|x, (21)

Then using Eqs. (16)–(19) we have the following squeezing operator

S(r) =
∫ ∞

−∞

dx√
µ

||x1/µ〉〈x1|

= exp

(
−1

2
a†2

q tanh r

)
exp

[(
N + 1

2

)
ln sec hr

]
exp

(
1

2
A2

q tanh r

)
(22)

where r is a real squeeze parameter, i.e.,

r = eµ, tanh r = (µ2 − 1)/(µ2 + 1) (23)

In terms of the above squeezing operator we can derive the following trans-
formations that the squeezed operator S (r) engenders

S(r)AqS
−1(r) = Aq cosh r + a†

q sinh r (24)

S(r)a†
qS

−1(r) = a†
q cosh r + Aq sinh r (25)
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Operating the squeezed operator S (r) on the vacuum state |0〉 and the one-
photon state |1〉 respectively, we can obtain the q-analogues of a squeezed vacuum
state

|r, q〉1 = C1 exp

(
−1

2
a†2

q tanh r

)
|0〉

= C1

∞∑
n=0

(
−1

2
tanh r

)n √
[2n]!

n!
|2n〉 (26)

and the q-analogues of a squeezed one-photon state

|r, q〉2 = C2 exp

(
−1

2
a†2

q tanh r

)
|1〉

= C2

∞∑
n=0

(
−1

2
tanh r

)n √
[2n + 1]!

n!
|2n + 1〉 (27)

where C1 and C2 are the normalization constants of the states |λ, q〉1 and |r, q〉2

and are given by, respectively

|C1|2 =
[ ∞∑

n=0

(
1

2
tanh r

)2n [2n]!

(n!)2

]−1

(28)

|C2|2 =
[ ∞∑

n=0

(
1

2
tanh r

)2n [2n + 1]!

(n!)2

]−1

(29)

[n]! = [0][1][2] · · · [n], [0]! = 1 (30)

Here we can define a displacement operator

D(z) = exp
(
za†

q − z∗Aq

)
(31)

and then operate D(z) on the vacuum state |0〉, we can obtain q-analogues of a
coherent state

||z〉q = D(z)|0〉 = exp

(
−1

2
|z|2 + za†

q

)
|0〉. (32)

By virtue of the IWOP technique we can easily prove that the states (32) and the
following states

q〈z| = 〈0| exp

(
−1

2
|z|2 + z∗Aq

)
(33)
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make up the overcompleteness relations in the following form:∫
dz

π
||z〉qq〈z| =

∫
dz

π
D(z)|0〉〈0|D−1(z)

=
∫

dz

π

... exp
( − |z|2 + za†

q + z∗Aq − a†
qAq

)... = 1 (34)

On the other hand if operating D(z) on the squeezed vacuum states |r, q〉1,
we can obtain q-analogues of a squeezed coherent state as follows:

||z, r〉q = D(z)S(r)|0〉
= sec h1/2r exp

[
(a†

q − z∗) tanh r
] ||z〉q (35)

It then follows that we can prove that the states (35) and the following states:

q〈z, r| = q〈z| sec h1/2r exp
[
(Aq − z) tanh r

]
(36)

make up the following completeness relation:∫
dz

π
||z, r〉q q〈z, r| = sec hr

∫
dz

π

... exp
[ − |z|2 + za†

q + z∗Aq

+ (a†
q − z∗) tanh r + (Aq − z) tanh r − a†

qAq

]... (37)

= 1

where we have used Eq. (16).

3. QUADRATURE SQUEEZING

Here we study quadrature squeezing for the q-analogues of squeezed states
|r, q〉1 and |r, q〉2. Now let us define the quadrature operators X1 and X2 as
follows:

X1 = aq + a
†
q

2
, X2 = aq − a

†
q

2i
(38)

such that [X1, X2] = i/2, and they yield the unceratainty relation

(�X1)2(�X2)2 ≥ 1/16 (39)

if any of the following conditions holds

(�Xj )2 ≤ 1/4 (j = 1, 2) (40)

the field is said to be squeezed.
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In order to examine the squeezing depth of the light field, we define the
squeezing degree in the following form:

D1(1) = 2
〈
a†

qaq

〉 + 〈
a†2

q + a2
q

〉 − 〈
a†

q + aq

〉2
< 0 (41)

D2(1) = 2
〈
a†

qaq

〉 − 〈
a†2

q + a2
q

〉 + 〈
a†

q − aq

〉2
< 0 (42)

If the squeezing degree Dj (1) (j = 1, 2) satisfies the conditions −1 ≤
Dj (1) < 0, it means that the field has the quadrature squeezing effect in the
direction Xj (j = 1, 2), and the maximum squeezing (100%) is obtained while
for Dj (1) = −1.

By virtue of the q-analogues of squeezed states from Eqs. (26–30), we have
the following expectation values of some operators:

〈aq〉1 = 〈
a†

q

〉
1 = 0 (43)

〈a†
qaq〉1 = C2

1

∞∑
n=0

(
1

2
tanh r

)2n [2n]![2n]

(n!)2
(44)

〈
a2

q

〉
1 = 〈

a†2
q

〉
1 = C2

1

∞∑
n=0

(
−1

2
tanh r

)2n+1

× [2n + 2]!

(n!)2(n + 1)
(45)

Obviously, under the states |r, q〉2 the expectation values of the above op-
erators are easily obtained via Eqs. (27), (29) and (43)–(45). By virtue of Eqs.
(41)–(45) and the numerical computation method, the variations of the squeezing
functions Dj (1) (j = 1, 2) with respect to the squeezed parameter r for fixed

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-1
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Fig. 1. Quadrature squeezing of the state |r, q〉2 (Solid curve) and |r, q〉1 (broken curve) for q = 0.6.
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q = 0.6 are shown in detail in Fig. 1. From Fig. 1 it is clear that for the states
|λ, q〉1 the squeezing degree D1(1) is always negative and satisfies the squeezing
conditions −1 ≤ D1(1) < 0 over a considerable range of r , so this means that
the states |λ, q〉1 exhibit squeezing in the X1 direction. On the other hand, the
squeezing degree of the states |λ, q〉1 basically keep constant with the increasing
of r .

4. AMPLITUDE-SQUARED SQUEEZING

In order to examine whether or not the q-analogues of squeezed states |r, q〉1

and |r, q〉2 exhibit amplitude-squared squeezing, let us consider the following
Hermitian quadrature operators:

Y1 = a2
q + a

†2
q

2
, Y2 = a2

q − a
†2
q

2i
(46)

Then Y1 and Y2 yield the commutation relation

[Y1, Y2] = i

2

[
a2

q, a
†2
q

] = i(2N + 1) (47)

and obey the unceratainty relation

(�Y1)2(�Y2)2 ≥ |〈N + 1/2〉|2 (48)

The field is said to be in an amplitude-squared squeezing state if

(�Yj )2 ≤ |〈N + 1/2〉| (j = 1, 2) (49)

In order to examine the squeezing depth of the light field, we also define the
squeezing degree in the following form:

D1(2) =
〈
a4

q + a
†4
q

〉 + 2
〈
a
†2
q a2

q

〉 − 〈
a
†2
q + a2

q

〉2〈
a2

qa
†2
q

〉 − 〈
a
†2
q a2

q

〉 (50)

D2(2) = 2
〈
a
†2
q a2

q

〉 − 〈
a4

q + a
†4
q

〉 + 〈
a
†2
q − a2

q

〉2〈
a2

qa
†2
q

〉 − 〈
a
†2
q a2

q

〉 (51)

Similarly, if the squeezing degree Dj (2) (j = 1, 2) satisfies the conditions
−1 ≤ Dj (2) < 0, it means that the field has the amplitude-squared squeezing
effect in the direction Yj (j = 1, 2), and the maximum squeezing (100%) is
obtained while for Dj (2) = −1.

With the aid of the q-analogues of squeezed states from Eqs. (26–30),
we also have the following expectation values of some operators in the states
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Fig. 2. Amplitude-squared squeezing of the state
|r, q〉1 (Solid curve) and |r, q〉2 (broken curve) for
q = 0.6.

|λ, q〉1:

〈
a†2

q a2
q

〉
1 = |C1|2

∞∑
n=0

(
1

2
tanh r

)2n [2n]!

(n!)2
[2n][2n − 1] (52)

〈
a2

qa
†2
q

〉
1 = |C1|2

∞∑
n=0

(
1

2
tanh r

)2n [2n + 2]!

(n!)2
(53)

〈
a4

q

〉
1 = 〈

a†4
q

〉
1 = |C1|2

∞∑
n=0

(
1

2
tanh r

)2n+2 [2n + 4]!

(n!)2(n + 1)(n + 2)
(54)

Similarly, under the states |r, q〉2 the expectation values of the above operators
are also obtained via Eqs. (27), (29) and (52)–(54). By virtue of Eqs. (45), (50)–
(54) and the numerical computation method, the variations of the squeezing degree
Dj (2) (j = 1, 2) with respect to the squeezded parameter r for fixed q = 0.6 are
shown in detail in Fig. 2 and From Fig. 2 it can be seen that for a wide range
of r the squeezing degree D1(2) for the states |λ, q〉1 and |λ, q〉2 are always
negative, and they always satisfy the squeezing conditions −1 ≤ D1(2) < 0, so
it means that the states |λ, q〉1 and |λ, q〉2 respectively exhibit amplitude-squared
squeezing in the Y1 direction. However, the states start unsqeezed for r = 0 and
the squeezing sets in for r > 0. For the states |λ, q〉1 and |λ, q〉2 the depth of
squeezing with increasing r is rather similar for the considerable range of r . The
degree of squeezing for |λ, q〉1 basically have a trend to keep fixed constant with
the increasing of r .
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Fig. 3. Antibunching of the states |r, q〉1 (Solid curve) and |r, q〉2 (broken curve) for q = 0.6.

5. ANTIBUNCHING EFFECT

Now we shall turn to study the antibunching effect of the q-analogues of
squeezed states |r, q〉1 and |r, q〉2. At the first step we consider the second-order
correlation function g2(0), which is defined as

g2(0) =
〈
a
†2
q a2

q

〉
〈
a
†
qaq

〉2 (55)

where g(2)(0) < 1 means the states exhibit antibunching effect. Here by virtue of
the numberical calculation resluts for g(2)(0), we can plot g(2)(0) against r for fixed
q = 0.6 in Fig. 3. The resluts show that in the whole range of r the q-analogues of
squeezed one-photon states |r, q)2 exhibit antibunching effect and the antibunching
effect are strenthened and subsequently keep constant with increasing r , however
the q-analogues of squeezed vacuum states |r, q〉1 can not exhibit antibunching
effect.
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